
ESc 101: Fundamentals of Computing

Lecture 32

Mar 31, 2010

Lecture 32 () ESc 101 Mar 31, 2010 1 / 11



Outline

1 Fibonacci Numbers

2 Allocating Memory Dynamically

Lecture 32 () ESc 101 Mar 31, 2010 2 / 11



Computing Large Fibonacci Numbers

To store large Fibonacci numbers, an int type variable in insufficient.

Instead, we can use functions for adding large numbers developed in
the beginning of the course.

A number is now stored as an array of SIZE+1 characters with last
symbol storing the sign.

Lecture 32 () ESc 101 Mar 31, 2010 3 / 11



Computing Large Fibonacci Numbers

To store large Fibonacci numbers, an int type variable in insufficient.

Instead, we can use functions for adding large numbers developed in
the beginning of the course.

A number is now stored as an array of SIZE+1 characters with last
symbol storing the sign.

Lecture 32 () ESc 101 Mar 31, 2010 3 / 11



Computing Large Fibonacci Numbers

To store large Fibonacci numbers, an int type variable in insufficient.

Instead, we can use functions for adding large numbers developed in
the beginning of the course.

A number is now stored as an array of SIZE+1 characters with last
symbol storing the sign.

Lecture 32 () ESc 101 Mar 31, 2010 3 / 11



Function Fib loop()

/* Computes the nth Fibonacci number and stores it

* in num.

*/

void Fib_loop(int n, char num[])

{

char F[N][SIZE+1];

set_number(F[0], 1); // set first two numbers

set_number(F[1], 1);

for (int m = 2; m <= n; m++)

add_numbers(F[m-2], F[m-1], F[m]);

copy_number(num, F[n]);

}

Lecture 32 () ESc 101 Mar 31, 2010 4 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Defining New Types

Instead of defining a long integer everywhere as a character array, it
would be much nicer if we can define our own type of variable, say
Number.

It is possible using typedef command.

We can, for example, say:
typedef char Number[SIZE+1];

This defines a type called Number, which is same as an array of
SIZE+1 symbols.

Now, everywhere we can define number variables as of type Number.

A new type is defined exactly as a variable name.

Lecture 32 () ESc 101 Mar 31, 2010 5 / 11



Function Fib loop() Again

typedef char Number[SIZE+1];

/* Computes the nth Fibonacci number and stores it

* in num.

*/

void Fib_loop(int n, Number num)

{

Number F[N];

set_number(F[0], 1); // set first two numbers

set_number(F[1], 1);

for (int m = 2; m <= n; m++)

add_numbers(F[m-2], F[m-1], F[m]);

copy_number(num, F[n]);

}
Lecture 32 () ESc 101 Mar 31, 2010 6 / 11



Changing Addition Functions

We rewrite all functions using the new type.

Create a header file and put all function declarations and type
definition there.

Split the functions in two files: one for I/O and one for addition.

Lecture 32 () ESc 101 Mar 31, 2010 7 / 11



Changing Addition Functions

We rewrite all functions using the new type.

Create a header file and put all function declarations and type
definition there.

Split the functions in two files: one for I/O and one for addition.

Lecture 32 () ESc 101 Mar 31, 2010 7 / 11



Changing Addition Functions

We rewrite all functions using the new type.

Create a header file and put all function declarations and type
definition there.

Split the functions in two files: one for I/O and one for addition.

Lecture 32 () ESc 101 Mar 31, 2010 7 / 11



Outline

1 Fibonacci Numbers

2 Allocating Memory Dynamically

Lecture 32 () ESc 101 Mar 31, 2010 8 / 11



Runtime Allocation of Memory

So far, all our variables have been allocated space by the compiler,
and the space is fixed during the execution of the program.

This means that the space allocated to an array is fixed a-priory,
irrespective of whether during the execution of the program, less or
more is actually needed.

For example, for storing large numbers, we have fixed the number of
digits to SIZE.

This is inconvenient since, depending on where the library for addition
is used, the size requirements may be different.

C provides a way to handle this: by allocating memory at the time of
execution instead of at the time of compilation.

Lecture 32 () ESc 101 Mar 31, 2010 9 / 11



Runtime Allocation of Memory

So far, all our variables have been allocated space by the compiler,
and the space is fixed during the execution of the program.

This means that the space allocated to an array is fixed a-priory,
irrespective of whether during the execution of the program, less or
more is actually needed.

For example, for storing large numbers, we have fixed the number of
digits to SIZE.

This is inconvenient since, depending on where the library for addition
is used, the size requirements may be different.

C provides a way to handle this: by allocating memory at the time of
execution instead of at the time of compilation.

Lecture 32 () ESc 101 Mar 31, 2010 9 / 11



Runtime Allocation of Memory

So far, all our variables have been allocated space by the compiler,
and the space is fixed during the execution of the program.

This means that the space allocated to an array is fixed a-priory,
irrespective of whether during the execution of the program, less or
more is actually needed.

For example, for storing large numbers, we have fixed the number of
digits to SIZE.

This is inconvenient since, depending on where the library for addition
is used, the size requirements may be different.

C provides a way to handle this: by allocating memory at the time of
execution instead of at the time of compilation.

Lecture 32 () ESc 101 Mar 31, 2010 9 / 11



Runtime Allocation of Memory

So far, all our variables have been allocated space by the compiler,
and the space is fixed during the execution of the program.

This means that the space allocated to an array is fixed a-priory,
irrespective of whether during the execution of the program, less or
more is actually needed.

For example, for storing large numbers, we have fixed the number of
digits to SIZE.

This is inconvenient since, depending on where the library for addition
is used, the size requirements may be different.

C provides a way to handle this: by allocating memory at the time of
execution instead of at the time of compilation.

Lecture 32 () ESc 101 Mar 31, 2010 9 / 11



Runtime Allocation of Memory

So far, all our variables have been allocated space by the compiler,
and the space is fixed during the execution of the program.

This means that the space allocated to an array is fixed a-priory,
irrespective of whether during the execution of the program, less or
more is actually needed.

For example, for storing large numbers, we have fixed the number of
digits to SIZE.

This is inconvenient since, depending on where the library for addition
is used, the size requirements may be different.

C provides a way to handle this: by allocating memory at the time of
execution instead of at the time of compilation.

Lecture 32 () ESc 101 Mar 31, 2010 9 / 11



The malloc() Function

malloc(n) allocates a contiguous memory block of size n bytes and
returns a pointer to the first byte.

free(p) deallocates the memory block pointed to by p.

Lecture 32 () ESc 101 Mar 31, 2010 10 / 11



The malloc() Function

malloc(n) allocates a contiguous memory block of size n bytes and
returns a pointer to the first byte.

free(p) deallocates the memory block pointed to by p.

Lecture 32 () ESc 101 Mar 31, 2010 10 / 11



Function Fib loop() Yet Again

typedef char *Number;

int SIZE = 10; // Represents the number of digits in a number

/* Computes the nth Fibonacci number and stores it

* in num.

*/

void Fib_loop(int n, Number num)

{

Number F[N];

for (int m = 0; m <= n; m++) // allocate space

F[m] = (Number) malloc(SIZE); // Value of SIZE to be read from user

set_number(F[0], 1); // set first two numbers

set_number(F[1], 1);

for (int m = 2; m <= n; m++)

add_numbers(F[m-2], F[m-1], F[m]);

copy_number(num, F[n]);

for (int m = 0; m <= n; m++) // free up space

free(F[m]);

}

Lecture 32 () ESc 101 Mar 31, 2010 11 / 11


	Fibonacci Numbers
	Allocating Memory Dynamically

